Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays.
نویسندگان
چکیده
Short-chain fructooligosaccharides (scFOS) and other prebiotics are used to selectively stimulate the growth and activity of lactobacilli and bifidobacteria in the colon. However, there is little information on the mechanisms whereby prebiotics exert their specific effects upon such microorganisms. To study the genomic basis of scFOS metabolism in Lactobacillus plantarum WCFS1, two-color microarrays were used to screen for differentially expressed genes when grown on scFOS compared to glucose (control). A significant up-regulation (8- to 60-fold) was observed with a set of only five genes located in a single locus and predicted to encode a sucrose phosphoenolpyruvate transport system (PTS), a beta-fructofuranosidase, a fructokinase, an alpha-glucosidase, and a sucrose operon repressor. Several other genes were slightly overexpressed, including pyruvate dehydrogenase. For the latter, no detectable activity in L. plantarum under various growth conditions has been previously reported. A mannose-PTS likely to encode glucose uptake was 50-fold down-regulated as well as, to a lower extent, other PTSs. Chemical analysis of the different moieties of scFOS that were depleted in the growth medium revealed that the trisaccharide 1-kestose present in scFOS was preferentially utilized, in comparison with the tetrasaccharide nystose and the pentasaccharide fructofuranosylnystose. The main end products of scFOS fermentation were lactate and acetate. This is the first example in lactobacilli of the association of a sucrose PTS and a beta-fructofuranosidase that could be used for scFOS degradation.
منابع مشابه
Invitro e¡ectsof selected synbiotics on the humanfaecal microbiota composition
Synbiotics are recognized means of modulating gut microbiota composition and activities. However, whether synbiotics are superior to prebiotics and probiotics alone in moderating the gut microbiota towards a purportedly healthy composition has not been determined. Eight selected synbiotics (short-chain fructooligosaccharides or fructooligosaccharides, each combined with one of four probiotics, ...
متن کاملTranscriptional Reprogramming at Genome-Scale of Lactobacillus plantarum WCFS1 in Response to Olive Oil Challenge
Dietary fats may exert selective pressures on Lactobacillus species, however, knowledge on the mechanisms of adaptation to fat stress in these organisms is still fragmentary. This study was undertaken to gain insight into the mechanisms of adaptation of Lactobacillus plantarum WCFS1 to olive oil challenge by whole genome transcriptional profiling using DNA microarrays. A set of 230 genes were d...
متن کاملIdentification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum W C FSI in vivo
B ackground: There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in tw o placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in...
متن کاملFunctional analysis of the role of CggR (central glycolytic gene regulator) in Lactobacillus plantarum by transcriptome analysis
The level of the central glycolytic gene regulator (CggR) was engineered in Lactobacillus plantarum NC8 and WCFS1 by overexpression and in-frame mutation of the cggR gene in order to evaluate its regulatory role on the glycolytic gap operon and the glycolytic flux. The repressor role of CggR on the gap operon was indicated through identification of a putative CggR operator and transcriptome ana...
متن کاملMolecular adaptation of Lactobacillus plantarum WCFS1 to gallic acid revealed by genome-scale transcriptomic signature and physiological analysis
BACKGROUND Gallic acid (GA) is a model hydroxybenzoic acid that occurs esterified in the lignocellulosic biomass of higher plants. GA displays relevant biological activities including anticancer properties. Owing to its antimicrobial and cellulase-inhibiting activities, GA also imposes constraints to the fermentability of lignocellulosic hydrolysates. In depth-knowledge of the mechanisms used b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 6 شماره
صفحات -
تاریخ انتشار 2007